Vida Extraterrestre – Elementos

En la entrada anterior, observamos qué tipos de lecciones familiares de la vida terrestre podrían decirnos sobre cómo podría ser un Extraterrestre. Estas observaciones no pretendían ser exhaustivas, ya que se basaban en un rango muy limitado de bioquímica. Los animales que respiran oxígeno y convierten la glucosa en energía y las plantas que convierten la luz solar ni siquiera abarcan el rango de la bioquímica observada aquí en la Tierra, y mucho menos el rango de lo posible. Hay criaturas en la Tierra que usan metano para existir y otras que extraen energía puramente de sustancias químicas, en lugar de explotar (directa o indirectamente) la luz del sol.

Luego está la respiración y la fermentación con azufre, solo por nombrar algunas alternativas. Al final de esta entrada, hablaremos sobre formas más “exóticas” de la vida en la Tierra. Nuestro verdadero interés se centra en los extraterrestres que podrían visitar nuestro planeta, pero su historia está inextricablemente ligada a la cuestión de la vida extraterrestre no alienígena. Uno debe tener el segundo para tener el primero. En consecuencia, pasaremos un tiempo explorando lo que sabemos sobre la vida extraterrestre y las limitaciones impuestas a dicha vida por consideraciones simples de la química y la ley física.

El lector debe saber que cualquier escrito sobre este tema está destinado a ser incompleto. Como señaló el popular ensayista científico y genetista pionero JBS Haldane en su libro de 1927 Possible Worlds and Other Essays, “El Universo no solo es más extraño de lo que suponemos, sino más extraño de lo que podemos suponer”. Es bastante razonable suponer que el universo ‘tiene’ un truco o dos en la manga y nos sorprenderá más de una vez. Aun así, podemos hablar sobre lo que sabemos sobre la química relevante. Si nada más, aprenderemos cuáles son las consideraciones importantes para la astrobiología moderna.

¿Qué es la vida?

Esta pregunta es aparentemente tan simple, y, sin embargo, ha molestado a algunos de los científicos y filósofos más conocedores durante décadas. Aunque apenas es la primera vez que escribe sobre el tema, el libro de 1944 del físico Erwin Schrödinger (Si, el del famoso gato) What Is life? es uno de esos ejemplos. Es un intento inicial interesante de utilizar las ideas de la física moderna para abordar la cuestión. Tanto James Watson como Francis Crick, co-descubridores del ADN, acreditaron este libro como una inspiración para su investigación posterior.

La definición de vida aún no está resuelta. Los científicos modernos han logrado enumerar una serie de características críticas que parecen identificar la vida. Un ser vivo debería tener la mayoría, si no todas, de las siguientes características:

  • Debe ser capaz de regular el entorno interno del organismo.
  • Debe poder metabolizar o convertir la energía para cumplir las tareas necesarias para la existencia del organismo.
  • Debe crecer convirtiendo energía en componentes del cuerpo.
  • Debe ser capaz de adaptarse en respuesta a los cambios en el entorno.
  • Debe ser capaz de responder a los estímulos.
  • Debe poder reproducirse.

Estas características lo distinguen de la materia inanimada.

Si bien estas propiedades pueden ayudarlo a identificar la vida cuando la encuentra, en realidad no nos dan una idea de las limitaciones impuestas por el universo sobre cómo sería la vida. El propósito de esta entrada es tener una idea de si un posible escritor de ciencia ficción es ridículo cuando basa su historia en un extraterrestre con huesos hechos de oro y sodio líquido en busca de sangre. Entonces, ¿qué nos dice nuestro mejor entendimiento actual que la vida requiere? Una combinación de teoría y experimentación sugiere que hay cuatro requisitos cruciales para la vida. Ellos están (En orden decreciente de certeza):

  • Un desequilibrio termodinámico;
  • Un entorno capaz de mantener enlaces interatómicos covalentes durante largos períodos de tiempo;
  • Un ambiente líquido; y
  • Un sistema estructural que puede apoyar la evolución Darwiniana.

El primero es esencialmente obligatorio. La energía no impulsa el cambio, sino que las diferencias de energía son la fuente del cambio. El “desequilibrio termodinámico” simplemente significa que hay lugares de mayor energía y menor energía. Esta diferencia establece un flujo de energía, que los organismos pueden aprovechar para sus necesidades. No es fundamentalmente diferente de cómo funciona una planta de energía hidroeléctrica: hay un lugar donde el agua es profunda (alta energía) y un lugar donde el agua es poco profunda (baja energía).

Así como el flujo de agua de un lado de la presa al otro puede convertir una turbina para generar electricidad o un molino para moler grano, un organismo explotará una diferencia de energía para hacer los cambios que necesita para sobrevivir.

El segundo requisito es esencialmente nada más que decir que la vida está hecha de átomos, unidos en moléculas más complejas. Estas moléculas deben estar unidas lo suficiente como para ser estables. Si las moléculas se caen constantemente, es difícil imaginar que esto dé como resultado una forma de vida sostenible. Es este requisito el que establece algunas restricciones sobre qué átomos juegan un papel importante en la composición de cualquier vida. Espero que después de esta discusión, comprenda la razón de la frase frecuentemente repetida en ciencia ficción “forma de vida basada en el carbono”.

El requisito número tres es menos, digamos, crucial, sin embargo, es difícil imaginar la evolución de la vida en un entorno que no es líquido. Los átomos no se mueven fácilmente en un entorno sólido y un entorno gaseoso implica densidades mucho más bajas y puede transportar una cantidad mucho menor de los átomos necesarios para construir bloques y nutrición. Los líquidos pueden disolver sustancias y moverlas fácilmente.

Finalmente, el cuarto requisito podría no ser necesario para la vida extraterrestre, pero es crucial para los alienígenas. Ciertamente, la vida multicelular o su equivalente no será la primera forma de vida que se desarrolle. La primera forma de vida que se desarrolla será de una forma análoga a los organismos unicelulares de la Tierra (en realidad, lo más probable es que sea más simple… después de todo, los organismos unicelulares modernos ya son bastante complejos). Para formar especies con una complejidad creciente, pequeños cambios en el organismo serán necesarios. La evolución darwiniana es el proceso mediante el cual una criatura se crea con diferencias de sus padres. Lo primero que es necesario es que el organismo sobreviva al cambio. Después de todo, si el cambio lo mata, es el final del camino para ese individuo. Una vez que hay cambios que permiten que el organismo hijas sobreviva y posiblemente confiera propiedades diferentes, los procesos de selección se vuelven importantes. Las criaturas que posteriormente se reproducen de manera más efectiva crecerán gradualmente en población hasta que dominen su nicho ecológico.

Entonces, hablemos de estas ideas con un poco más de detalle.

Desequilibrio Termodinámico

La consideración más importante para cualquier forma de vida es la necesidad de un desequilibrio termodinámico. Esta bocanada de una idea es simultáneamente intuitiva y contra-intuitiva.

Si le dices a alguien que la energía es necesaria para la vida, es probable que no tengas ningún argumento. Las plantas absorben la luz solar, las personas comen; la necesidad de energía es evidente. Sin embargo, la realidad es un poco más sutil. La energía tiene un significado técnico en la ciencia. La energía se puede encontrar en una bola lanzada, una primavera en espiral y una barra de dinamita.

Sin embargo, lo que la vida necesita no es energía, sino más bien una diferencia de energía. Si la energía es la misma en todas partes, esto no es útil. Lo que es útil son las diferencias de energía. Para ilustrar esta sutil diferencia, considere un depósito de agua retenido por una presa.

En el lado del agua, todo es igual. Mientras la presión cambia con la profundidad, la uniformidad evita que el agua se mueva. Tiende a quedarse. Sin embargo, el agua tiene un tipo de energía que los científicos llaman “energía potencial”. (La energía potencial es el tipo de energía en la que algo se movería si lo permitimos, como cómo se movería el agua si rompiéramos la presa o cómo volaría una flecha de un arco estirado si se soltara la cuerda.)

Ahora imagina que hay un agujero en el fondo de la presa. El agua saldría del lado del agua hacia el lado del aire. De hecho, así es como funcionan las centrales hidroeléctricas. El agua en movimiento enciende una turbina, que genera energía eléctrica.

El punto crucial aquí es que una diferencia de energía (y un flujo posterior de alta energía a menor energía) es fundamental para la creación de energía eléctrica y que esto es cierto en un sentido más general. Esto es lo que queremos decir cuando decimos “desequilibrio termodinámico”. Termodinámica significa energía y desequilibrio significa “no igual” o diferente.

El agua retenida por una presa es un ejemplo de diferencia de energía, y esta diferencia de energía puede convertirse en un flujo de agua a alta presión que puede convertir una turbina eléctrica. Aunque las diferencias de energía de la biología y la bioquímica provienen de las concentraciones de sustancias químicas retenidas por una membrana celular, o en los enlaces interatómicos dentro de las moléculas, el principio es el mismo.

La vida funciona de la misma manera. Las diferencias de energía permiten que la energía fluya y realice los tipos de cambios que permiten la existencia de la vida. De por vida, es importante poder almacenar estas diferencias de energía para usar cuando sea conveniente. De esta forma, un organismo puede moverse, llevando consigo su fuente de energía. Esto proporciona protección contra las situaciones aleatorias que podrían restringir el acceso a la energía.

Para tener una idea de por qué esto es importante, considere una hipotética vaca alienígena que tiene que comer constantemente para sobrevivir. Si la vaca existe en un área siempre creciente y siempre presente de pasto extraño, no hay problema. Sin embargo, imagina una sequía. Con la muerte de la hierba, la vaca moriría inmediatamente, incapaz de moverse a un nuevo parche de hierba. O imagine una planta que usa la luz solar como la de la Tierra, pero que no puede almacenar energía. Viviría durante el día, pero moriría cada noche. Sin una fuente de energía garantizada e interminable, la vida de estas formas es muy vulnerable. El almacenamiento de energía es necesario para que exista la vida.

Parece probable que la vida hecha de átomos (como lo somos nosotros) debe explotar el almacenamiento de energía en las moléculas. Ciertos átomos se pueden combinar con la energía disponible (como hacen las plantas con la luz solar). Más tarde, la energía puede extraerse convirtiendo moléculas que contienen mucha energía en energías más bajas y usando la energía extra para vivir. Hacemos esto cuando comemos una galleta y metabolizamos azúcares o grasas. Quizás un ejemplo aún más intuitivo de esto sería cuando quemamos madera. La celulosa se combina con el oxígeno a través de una serie de reacciones químicas, dando como resultado el dióxido de carbono y el agua. Sabemos que un fuego libera calor, ese es típicamente el punto del fuego después de todo, pero lo que no es tan obvio es que lo que estamos viendo cuando tostamos nuestros malvaviscos es la transformación de moléculas con mucha energía almacenada en sus enlaces en unos con menos energía.

Las restricciones impuestas por los átomos

Los científicos saben mucho sobre química, cómo interactúan los átomos y las propiedades de la materia que forman. Sin duda, este conocimiento puede decirnos mucho sobre qué elementos son cruciales para la vida. Somos “formas de vida basadas en carbono”, como bien dicen en la ciencia ficción. Pero la ciencia ficción también habla de otras posibilidades. The Horta en el episodio de Star Trek “The Devil in the Dark” era una forma de vida construida alrededor del átomo de silicio. Los Oustsiders de Larry Nivens de su serie Known Space tienen una bioquímica que incluye helio líquido. Dada la imaginación de los escritores de ciencia ficción, tanto profesionales como aficionados, podría imaginar que sentarse en el cajón de alguien es una historia sobre el encuentro de la humanidad con una raza inteligente, con huesos de platino y sangre de oro fundido, que excreta diamantes. (Si alguien roba esa idea y escribe una historia, quiero parte de las regalías.) Entonces, ¿qué nos dice la ciencia sobre el rango de combinaciones atómicas que es físicamente posible? Para eso, tenemos que pensar en algunos requisitos moleculares simples de la vida.

La vida no puede existir sin átomos que se combinan para formar moléculas más complejas. Por lo tanto, la forma en que estos átomos se interconectan es una consideración crucial. Si bien puede ser obvio que las reglas de la química son un aspecto definitorio de cualquier forma de vida, esa afirmación es bastante vaga. De hecho, podemos hacerlo mejor y analizar a continuación algunas consideraciones detalladas.

Por ejemplo, la vida extraterrestre (Y especialmente la vida alienígena) requerirá una química compleja. Los productos químicos que realizan tareas análogas a nuestros carbohidratos, proteínas, ADN, etc., tendrán que formar moléculas formadas por muchos átomos que se entrelazan. Entonces, dos consideraciones importantes en la química de la vida serán identificar átomos que (1) puedan hacer muchas conexiones con átomos vecinos y (2) puedan hacer conexiones suficientemente fuertes para que las moléculas sean estables.

Los estudiantes de química han requerido durante mucho tiempo aprender sobre las valencias, que es esencialmente la cantidad de enlaces que el átomo de un elemento en particular puede formar. Para hacer moléculas complejas, un átomo tendrá que poder conectarse a muchos átomos cercanos. Esto puede hacerse increíblemente claro al considerar los elementos de gas noble (helio, neón, argón, etc.) que habitan en la columna de la derecha de la siguiente figura. Estos elementos no interactúan con otros átomos. Cada átomo de los elementos nobles está solo. Simplemente no participan en química en absoluto. En consecuencia, podemos estar seguros de que estos elementos no juegan un papel sustancial en el metabolismo de ninguna forma de vida y ciertamente no tienen un rol estructural en ninguna forma de vida.

Los átomos que componen la materia tienen ‘personalidad’, con distintas capacidades para hacer enlaces más fuertes y más débiles e incluso diferentes números de enlaces. Esta variación entre los elementos es fundamental para comprender toda la materia, incluida la vida misma. Los estudiantes de química encontrarán que la ubicación del hidrógeno (H) es un poco extraña, ya que están acostumbrados a verla encabezar la columna que incluye litio (Li) y sodio (Na). Sin embargo, cada átomo de hidrógeno se puede ver como capaz de donar o aceptar un electrón para formar un enlace, por lo que, naturalmente, se puede poner en cualquier ubicación.

Entonces podemos considerar la columna inmediatamente a la izquierda de los elementos nobles. Esta columna, que incluye hidrógeno, flúor y cloro, consiste en átomos que pueden formar un enlace con un átomo vecino. Dado que todos estos elementos actúan de manera similar, podemos ilustrar el punto considerando solo el hidrógeno. Es como una habitación llena de gente con un solo brazo. Pueden tomarse de la mano con solo una persona más a la vez. En un mundo en el que el hidrógeno es un componente básico de la vida, solo puedes crear moléculas muy simples, específicamente las que consisten en dos átomos idénticos. Si el hidrógeno puede formar solo un enlace, entonces un átomo de hidrógeno se une a un segundo átomo. Ambos átomos forman un enlace simple y el resultado es una molécula de dos átomos, como se muestra en la siguiente figura. Esto es cierto para todos los elementos en esa columna.

Este es un par de maneras de representar cómo los átomos de hidrógeno (H) se combinan para formar una molécula de hidrógeno (H2). Los electrones de los dos átomos se comparten entre ellos. En la parte inferior, vemos una representación, con el símbolo atómico para el átomo y un guion largo (-) para representar el enlace.

Moviendo una columna hacia la izquierda, encontramos los elementos de dos enlaces. El ejemplo más ligero de estos átomos es el oxígeno. Dado que el oxígeno puede formar dos enlaces, puede tomar dos átomos de hidrógeno. Así es como se forma el agua, con un oxígeno y dos átomos de hidrógeno. Invocando nuestro ejemplo de los brazos, el oxígeno es un elemento de dos brazos. Puede sostenerse con dos átomos de hidrógeno o sostener dos manos con otro átomo de oxígeno. Moviéndonos de nuevo una columna hacia la izquierda, encontramos los elementos de tres enlaces. De manera similar, un átomo de nitrógeno se puede conectar con tres átomos de hidrógeno y producir amoníaco.

Sin embargo, la columna que permite las estructuras moleculares más intrincadas es la de carbono. El carbono y otros elementos en esa columna pueden formar cuatro enlaces. Continuando con nuestra exploración de la unión con el hidrógeno, un átomo de carbono unido con cuatro átomos de hidrógeno forma una molécula de metano. En nuestra analogía de brazos, el nitrógeno tiene tres brazos, mientras que el carbono tiene cuatro.

El carbono (Como cualquier átomo) puede conectarse con más que simplemente átomos de hidrógeno. Se puede combinar con otros átomos de carbono, así como con todos los otros átomos de la tabla periódica. Eso sí, esto también es cierto para las columnas de nitrógeno y oxígeno, pero es la capacidad de crear cuatro enlaces lo que permite que se creen las moléculas más complejas. La siguiente figura da una idea de los tipos de estructuras que están disponibles cuando uno tiene átomos que tienen muchas posibilidades de vinculación. Estas son las moléculas de Vida en la Tierra.

Los diferentes elementos pueden participar en una cantidad diferente de enlaces, que van de cero a cuatro. Mientras sean más enlaces en los que puede participar un elemento específico tiene un gran efecto sobre la complejidad de las moléculas que se pueden formar.

Ahora probablemente ya te hayas adelantado y pensado: “¿Y qué hay de los otros elementos en esa columna?” Después de todo, el silicio también puede formar cuatro enlaces atómicos. ¿Es posible la vida basada en silicio?

Ciertamente, los átomos de silicio pueden componer moléculas complejas; sin embargo, la situación es más difícil que simplemente reemplazar los átomos de carbono por los de silicio. Como un simple ejemplo, considere el dióxido de carbono común que exhalamos al respirar. El dióxido de carbono es un gas, que facilita el transporte del fluido (Es decir, la sangre) en nuestros cuerpos. Por el contrario, el dióxido de silicio es un sólido, conocido por el nombre más común de “arena”. Volveremos a la vida basada en el silicio al final de esta entrada.

Fuerza de los Enlaces

Si bien la cantidad de enlaces en los que puede participar un átomo es una consideración muy importante, de igual importancia es la fuerza de los enlaces. El mundo molecular y atómico es un lugar frenético, con el movimiento constante como norma. Debido al simple calor, los átomos vibran, rebotan entre sí y sufren un flujo continuo de colisiones. Si los enlaces no son lo suficientemente fuertes, estas colisiones atómicas y moleculares podrían destrozar las moléculas de la vida, al igual que un tackle duro en el fútbol americano puede causar un balón suelto. Sin un entorno molecular estable, seguramente no podría existir vida.

Podemos entender este punto de una manera visual al considerar uno de esos programas de televisión del tipo Reality donde se presentan con competiciones ridículas. Supongamos que este espectáculo se llama “Unión” y el punto es que dos personas están unidas de alguna manera y deben permanecer juntas durante toda la temporada. Si su conexión falla, son descalificados. Supongamos que una pareja está atada con hilo de coser común, mientras que otra está conectada con el tipo de cuerda que utilizan los alpinistas. No se necesita mucha imaginación para darse cuenta de que la pareja conectada por un hilo tiene una seria desventaja. Solo en el día a día de la vida, caminar, cepillarse los dientes, dormir, etc., algo va a romper ese hilo. Por el contrario, hay muy poco que la pareja de cuerdas encontrará que hará que se separen.

Hay un par de formas en que los átomos se pueden unir, pero el más fuerte se denomina “enlace covalente”. En un enlace covalente, algunos de los electrones en cada átomo individual se comparten entre los dos átomos. En cierto sentido, los dos átomos se fusionan en una sola unidad molecular. Y estos enlaces son realmente fuertes. Para dar una sensación de escala, dos átomos de hidrógeno se pueden unir de esta manera para formar una molécula de hidrógeno. La unión es tan fuerte que, si tomara gas hidrógeno a temperatura y presión ambiente, necesitaría un volumen de gas del tamaño de la galaxia de la Vía Láctea para tener un 50% de probabilidad de separar una molécula en sus dos átomos constituyentes. Estas moléculas son realmente difíciles de romper. Si no lo fueran, un volumen que contenga tantos átomos tendría muchas moléculas rotas.

Volviendo a la pregunta de qué átomos es más probable que tengan un papel importante en la vida, podemos preguntarnos si los diferentes elementos pueden formar enlaces más fuertes o más débiles. Resulta que los elementos de menor masa pueden formar enlaces mucho más fuertes que los más pesados. La razón es un poco sutil, pero afortunadamente no es demasiado difícil de entender. Todo se reduce al grado en que los átomos se superponen entre sí. La fracción más grande de superposición, más esos dos electrones se comparten y más fuerte es el vínculo. Este punto se ilustra en la siguiente figura.

La fuerza de un enlace covalente depende mucho de cuánto se superponen los electrones de los átomos. Cuanto mayor es la fracción de tiempo que se superponen, más fuerte es el vínculo. Aquí, el área blanca representa los electrones disponibles para la unión, mientras que el área gris representa la región de superposición. En moléculas más pequeñas, el área gris es una fracción más grande del área blanca.

Esta figura se simplifica, pero tiene algunas características valiosas. Los átomos consisten en un núcleo y luego un enjambre de electrones alrededor del exterior. Los electrones más cercanos al núcleo (O en los estados de energía más bajos, si has tomado una clase de química) no están generalmente disponibles para formar enlaces, mientras que los pocos electrones externos sí lo están. En la figura anterior, he elegido representar la porción central del átomo, que no interactúa, como un punto negro. El círculo blanco exterior está destinado a representar los electrones disponibles para formar enlaces. Notarás que está dibujado un átomo pequeño y grande. Para ambos átomos, el grosor del área blanca es el mismo. Luego gráficamente hay moléculas conectando dos átomos. Hasta cierto punto, se puede decir que los átomos comparten los electrones en la región entre los dos átomos donde las áreas blancas se superponen. Esta región de superposición se indica en gris. Ahora compare la región gris con la región blanca en moléculas de átomos pequeños y átomos grandes. Usted observa que en las moléculas de átomos pequeños que el área gris es una fracción más grande del área blanca. Los átomos más pequeños comparten sus electrones con sus vecinos una fracción mayor del tiempo, que es la base para los enlaces mucho más fuertes en los elementos más ligeros.

Estas simples consideraciones muestran por qué es de alguna manera natural que la vida se forme de carbono. El carbono puede formar cuatro enlaces fuertes con los átomos vecinos, lo que permite la formación de moléculas complejas. Otros átomos ligeros no pueden formar la mayor cantidad de enlaces, reduciendo la complejidad de la posible química, mientras que otros átomos pesados no pueden formar un enlace tan fuerte, lo que reduce la probabilidad de que las moléculas sean estables. El carbono es un elemento óptimo para la química molecular compleja.

Tal vez no sea sorprendente que las formas de vida basadas en el carbono concluyan que el carbono es una base ideal para formar la vida. Esto se llama “chauvinismo del carbono”. Volveremos a este punto cuando hayamos terminado nuestra descripción general de los componentes importantes de la vida y consideremos la química alternativa.

Oxígeno

Toda la vida multicelular en la Tierra usa oxígeno como parte de su sistema de respiración, aunque esto no es verdad en todas las formas de vida. El papel del oxígeno es que es un receptor de electrones. El movimiento de los electrones es la fuente de la energía de la vida, por lo que un elemento que puede aceptar electrones está facilitando el flujo de energía. El oxígeno es un aceptador superlativo de electrones.

¿El uso de oxígeno es una característica necesaria de la vida en el universo? Bueno, la respuesta es claramente no, dado que sabemos de la vida en la Tierra que usa otras sustancias para respirar. De hecho, estamos bastante seguros de que las primeras formas de vida en la Tierra habrían muerto por la presencia de oxígeno. Entonces, ¿qué pasa con el oxígeno y por qué se ha convertido en una presencia tan ubicua en la Tierra ahora? ¿El uso universal del oxígeno por la vida de la Tierra multicelular significa que la respiración de oxígeno es universal?

No lo hace, por supuesto, pero vale la pena pasar un poco de tiempo aprendiendo sobre los elementos esenciales del papel del oxígeno en la historia de la vida en la Tierra. No sabemos mucho sobre la primera vida en la Tierra. La vida se formó y muchas especies evolucionaron y se volvieron más complejas. Como es habitual con la evolución, algunas especies prosperaron, mientras que otras se extinguieron. Se cree que uno de estos organismos complejos es el padre de todas las especies existentes, mientras que los otros se extinguieron. Este ser padre se llama el último ancestro común universal, o LUCA (En inglés, Last Universal Common Ancestor). En la siguiente figura se muestra un árbol genealógico que muestra cómo la vida podría haberse ramificado.

Aquí se muestra cómo se cree que el primer organismo viviente comenzó y sufrió especiación. Finalmente, todas las ramas tempranas de la vida se extinguieron, excepto por un organismo que fue el último ancestro común universal, o LUCA. Este diagrama muestra solo los puntos más básicos, ya que se cree que la mezcla genética entre especies se produjo cuando los organismos eran más simples.

Trabajando hacia atrás desde hoy, los biólogos están bastante seguros de que la humanidad comparte un ancestro común con los chimpancés. Ese ancestro común compartió un ancestro aún anterior con otros primates. Los primates compartieron un ancestro común con otros mamíferos. Retrocediendo en el tiempo, ahora creemos que cada uno de los dominios, reinos, phyla, clases, etc. Ya mencionados en la entrada anterior se originó a partir de un ancestro común, cuyos descendientes variaron ligeramente y en consecuencia pusieron en movimiento las diferencias físicas y biológicas que se observan ahora en estas diferentes divisiones de la vida. Cada uno de los dominios de Prokarya, Eukarya y Archaea tenían un ancestro común diferente, aunque la investigación moderna sugiere que Eukarya se formó por una mezcla de ancestros anteriores de Archaea y Prokarya.

Llevando el patrón un paso más allá, se presume que había un organismo que fue el antepasado de todas las formas de vida en la Tierra. Ahora bien, este antepasado (el último ancestro común universal, o LUCA, mencionado anteriormente) no fue la primera forma de vida que vio la Tierra. Usando genética comparativa y bioquímica, los científicos han aprendido mucho sobre LUCA. Por ejemplo, LUCA usó ADN y un par de cientos de proteínas para vivir. LUCA ya era un organismo muy complejo, bastante diferente de la forma de vida más antigua. Es difícil saber qué adaptación de LUCA le dio la ventaja para sobrevivir y prosperar, mientras que todos sus primos contemporáneos estaban condenados a la extinción. Pero sobrevive, lo hizo y aquí estamos.

LUCA probablemente no dependía del oxígeno para su respiración. Si bien nuestra comprensión de la bioquímica de LUCA es incompleta, parece ser cierto que el hierro era una parte importante de sus vías metabólicas. Este hecho es una evidencia bastante concluyente de que LUCA vivió antes de que la atmósfera de la Tierra tuviera mucho oxígeno. Sabemos esto como el hierro realmente ‘ama’ combinarse con el oxígeno en una forma que es extremadamente insoluble en agua. Si hubiera un montón de oxígeno alrededor, el hierro sería engullido y sacado del ecosistema en forma de óxido. Como sin duda ha experimentado, el óxido no se disuelve y, una vez que el hierro está en forma de óxido, no está disponible para su uso futuro. Para que un organismo dependa mucho del hierro, significa que debe existir en un ambiente anóxico (bajo/sin oxígeno).

Si bien la fecha de la formación de la vida en la Tierra es un tema recurrente de debate, el período de hace unos 3.500 millones de años es una posición creíble, y la evidencia crece cada vez más fuerte después de unos 2.700 millones de años. Los estudios de la composición isotópica de rocas tempranas sugieren que antes de hace unos 2.400 millones de años, había muy poco oxígeno en la atmósfera. Sin embargo, hace 2.400 millones de años, la cantidad de oxígeno en la atmósfera comenzó a aumentar. La fuente del oxígeno era supuestamente bacterias fotosintéticas tempranas. Durante aproximadamente quinientos millones de años, el hierro en el océano absorbió oxígeno y se depositó en el fondo del océano. Este proceso continuó hasta que el hierro se usó por completo y es la fuente de las minas de hierro que ahora explotamos.

Una vez que se agotó el hierro, el oxígeno en la atmósfera comenzó a aumentar mucho más rápidamente. Como se menciona líneas arriba, la fuente de oxígeno eran las bacterias fotosintéticas que habían existido desde las primeras formas de vida, pero, dado el lado reactivo del oxígeno, el oxígeno se unía rápidamente a otras sustancias en el océano y, finalmente, en la tierra. Sin embargo, una vez que estos materiales que ‘aman’ el oxígeno en el mar y en la tierra se saturaron, la concentración de oxígeno en la atmósfera aumentó. A medida que crecía la concentración de oxígeno en la atmósfera, se encontró con la luz ultravioleta del sol. Esto condujo a la formación de ozono, que protege la superficie de la Tierra de la luz ultravioleta (Y posibilita la vida terrestre). Sin la protección del ozono, la luz ultravioleta esterilizaría la superficie del planeta, del mismo modo que usamos luz ultravioleta para esterilizar los instrumentos quirúrgicos y para matar las algas y los parásitos en las peceras.

Hace unos 800 millones de años, la cantidad de oxígeno en la atmósfera comenzó a aumentar con bastante rapidez. Este aumento en el oxígeno es un contribuyente frecuentemente citado a los orígenes de la vida multicelular (y, especialmente relevante para la idea de los alienígenas, la vida animal). El oxígeno proporcionó un gran depósito de una sustancia en la atmósfera que era un excelente aceptor de electrones y cuyo uso en la respiración y el metabolismo podría generar mucha energía.

Entonces el oxígeno es omnipresente en la Tierra y juega un papel central como parte del presupuesto de energía de todos los animales. La pregunta cuando pensamos en extraterrestres es “¿Es necesario el oxígeno?” Sabemos de la vida en la Tierra que usa otras sustancias como aceptores de electrones, con hierro, nitratos, sulfatos y dióxido de carbono, por nombrar algunos. Sin embargo, estas formas alternativas de respiración se encuentran en los microorganismos, no en los animales multicelulares, lo que sugiere que los beneficios de la respiración con oxígeno son sustanciales y que, si es posible, la evolución empujará la bioquímica en esa dirección.

Incluso en la Tierra, el mecanismo por el cual el oxígeno se usa para dar energía a los organismos no es un proceso simple sino más bien un asunto de pasos múltiples. Por lo tanto, es posible que en un planeta con un ambiente anóxico, la evolución invente un proceso de pasos múltiples para obtener el nivel requerido de energía necesaria para soportar la vida extraterrestre. Sin embargo, dados los beneficios del oxígeno, parece plausible que la vida finalmente descubra una forma de explotarlo si está presente. Esto nos lleva al próximo punto.

Abundancia Química

La química que hemos estado discutiendo es parcialmente académica en este punto. Por ejemplo, bien puede ser que el carbono sea el átomo perfecto para construir vida, pero, si no hay carbono alrededor, entonces no se usará. De manera similar, si no hay oxígeno presente, hace que sea difícil usarlo para respirar. Entonces, necesitamos agregar a nuestro conocimiento qué elementos están más presentes en el universo. Para entender cómo ciertos elementos son más o menos comunes, necesitamos entender sus orígenes.

La teoría actual es que el universo comenzó hace apenas 14 mil millones de años en un evento cataclísmico denominado Big Bang. Si bien la física del Big Bang es un tema fascinante, para nuestros propósitos, simplemente necesitamos saber que el universo era una vez tan caliente que los átomos no podrían existir; de hecho, los protones y neutrones individuales no pudieron formarse, ya que las temperaturas no les permitieron fundirse en el baño de energía y las partículas subatómicas que existían en ese momento.

A medida que el universo se expandió, se enfrió de una manera análoga a las explosiones con las que estamos familiarizados, y muy temprano en la historia del universo, surgieron protones y neutrones, seguidos de los elementos hidrógeno y helio. Para todos los efectos, no existían otros elementos. Siguiendo nuestra discusión anterior, la vida no podría formarse en ese universo. El helio no forma moléculas, y el hidrógeno forma moléculas simples que constan de dos átomos. Si esa fuera la historia completa, no estaríamos teniendo esta discusión. Debe haber más que debemos considerar.

Cada mañana, cuando ‘sale’ el sol, nos recuerda una cosa aparentemente trivial, pero importante. El sol brilla y desprende calor. Hace esto porque las colecciones muy densas de hidrógeno y helio pueden experimentar una fusión nuclear. Y la fusión nuclear es una de las formas más puras de ‘magia’ científica que la humanidad haya encontrado y entendido.

En la época medieval, los primeros científicos llamados alquimistas estaban obsesionados con la transformación de materiales de una forma a otra; de “metales básicos” (Por ejemplo, plomo) en oro. Si bien no hay duda de que la química moderna tiene una deuda con los primeros alquimistas, estaban condenados en su búsqueda de transformar un elemento en otro. Tal objetivo simplemente está más allá de la capacidad de las reacciones químicas.

Sin embargo, la fusión nuclear de estrellas logra precisamente eso. Los núcleos de elementos ligeros se combinan, formando elementos más pesados. En estas fundiciones estelares, el hidrógeno y el helio se forjan en oxígeno, carbono, nitrógeno, silicio y todos los elementos más ligeros que el hierro. La fusión nuclear estándar basada en estelares no puede crear elementos más pesados.

Da la casualidad que algunas estrellas se queman rápida y furiosas y terminan sus vidas en una espectacular explosión llamada supernova. En casi un abrir y cerrar de ojos, estas estrellas mueren, experimentando calor y reacciones nucleares que empequeñecen a aquellos en estrellas más complacientes. Con su muerte, forman elementos aún más pesados… incluso la creación de oro que eludió a los antiguos alquimistas. Esta es la razón por la que Carl Sagan declaró tan a menudo que todos somos “polvo de estrellas”. Sin estrellas, la vida e incluso los planetas no serían posibles. De hecho, las primeras estrellas se formaron cuando el universo no podía tener planetas. Los ingredientes de los planetas simplemente no existían. Pero, en su muerte, las primeras estrellas extendieron una compleja mezcla de elementos en todo el cosmos. Estos elementos se mezclaron con las nubes de hidrógeno existentes y formaron estrellas posteriores.

Nuestro sol es una estrella de segunda o tercera generación, habiéndose formado hace unos 5 mil millones de años. En el momento del nacimiento del sol, el universo tenía 9 mil millones de años para que las estrellas anteriores fabricaran los otros elementos de la tabla periódica. Los elementos presentes cuando nuestro sistema solar entró en existencia formaron el depósito desde el cual los planetas y cualquier vida posible deben ser compuestos.

La siguiente figura muestra las abundancias relativas de los treinta elementos más ligeros de nuestro sistema solar. El hidrógeno y el helio constituyen el 99.9% de la materia en el sistema solar, pero del 0.1% restante, los planetas se unieron. De los elementos restantes, el carbono, el oxígeno y el nitrógeno (Los elementos de la química orgánica y la vida tal como la conocemos) son los próximos más disponibles. La abundancia relativa de todos los elementos está bastante de acuerdo con nuestra comprensión de cómo se forman en los hornos estelares en los que fueron creados. El silicio, que es el primo químico del carbono, está presente en cantidades que son aproximadamente un 10% mayores que las del carbono. Entonces, una interpretación ingenua de este gráfico podría hacerte decir: “bueno, sí, tiene sentido que la vida esté hecha de carbono, ya que hay más”. Por el contrario, no se necesita pensar demasiado para decir: “Oye espera un minuto. Si el carbono es mucho más frecuente que el silicio, ¿por qué la Tierra es una gran roca (Es decir, dióxido de silicio) en lugar de estar hecha principalmente de carbono? ”

Aquí se muestra cómo se cree que el primer organismo viviente comenzó y sufrió especiación. Finalmente, todas las ramas tempranas de la vida se extinguieron, excepto por un organismo que fue el último ancestro común universal, o LUCA. Este diagrama muestra solo los puntos más básicos, ya que se cree que la mezcla genética entre especies se produjo cuando los organismos eran más simples.

Y, por supuesto, esa es una pregunta interesante. La cuestión de la abundancia relativa de elementos en el sistema solar nos dice mucho, pero la vida no podría formarse a partir de los elementos que están dentro del Sol. Probablemente tuvo que formarse sobre (O debajo o en la atmósfera de) la superficie de un planeta. Entonces las abundancias elementales correctas a considerar serían aquellas en la superficie del planeta. (La misma lógica que muestra que la composición química de la estrella es solo marginalmente relevante también descarta la composición molecular del núcleo de un planeta como una consideración importante. Es la composición de la corteza planetaria la que define el depósito de elementos a partir de los cuales la vida puede formarse.) Utilizo la palabra “planetario” en una especie de sentido genérico. La vida podría haberse formado en satélites de planetas que son estériles. Veremos en poco tiempo la razón por la cual el silicio no juega un papel central en la vida terrenal.

En este punto, comenzamos a ver lo difícil que puede ser generalizar la discusión de la química y la vida extraterrestre. Después de todo, los ambientes en los diversos planetas y satélites en nuestro propio sistema solar son extremadamente diversos. Las nubes de gas de Júpiter son bastante diferentes de la superficie de Mercurio, los páramos congelados de Europa y nuestra propia Tierra. Es esta diversa gama de entornos lo que hace que sea tan difícil para los astrobiólogos decidir dónde buscar la vida.

Pero, debemos recordar que estamos interesados en los extraterrestres, en lugar de la vida extraterrestre per se. Los alienígenas son criaturas con suficiente inteligencia para emplear herramientas y algún día competirán con los humanos por la dominación galáctica. Por lo tanto, es difícil imaginar una forma de vida suspendida en las nubes de un gigante de gas como un extraterrestre. Es mucho más fácil imaginar a una criatura en un objeto planetario rocoso como un competidor. En primer lugar, el acceso a los metales es muy importante para fabricar la mayoría de las herramientas y armas. En un ambiente gélido, otros materiales pueden servir para el mismo propósito. Y, en cualquier caso, la superficie de un planeta rocoso es probablemente el depósito elemental relevante para construir nuestra discusión sobre la vida extraterrestre.

Podemos comenzar con la composición química de la corteza terrestre como referencia. Esto se puede observar en la siguiente figura. Existen diferencias notables en la composición elemental de la Tierra en comparación con las abundancias elementales solares, lo que subraya que los detalles de la formación de planetas son fundamentales. El hidrógeno y el helio son raros. También vemos que los gases nobles (Helio, neón, argón, etc.) son notables en su ausencia. Estos elementos son gaseosos y no se unen a otros elementos para formar sólidos. El oxígeno es el elemento más presente, seguido del silicio. Esta mezcla refleja las diversas rocas (Feldespato, cuarzo, etc.) que componen la superficie de la Tierra. El carbono es muy raro en comparación con el silicio (Una pequeña fracción de una pequeña fracción, en comparación con alrededor de un cuarto de la corteza terrestre que está compuesta por silicio). Y esto probablemente nos está diciendo algo importante. Incluso dada la gran cantidad de silicio disponible y el hecho de que ambos elementos pueden crear cuatro enlaces, la vida se forma a partir del carbono. La capacidad de formar cuatro enlaces es muy importante, pero hay otras consideraciones que deben tenerse en cuenta al pensar en la composición química de la posible vida. Analizaremos al final de la entrada los problemas de silicio como un componente fundamental de la vida. (Sé que he prometido esto más de una vez, pero necesitamos un poco más de experiencia para explorar las limitaciones del silicio como base de la vida, así como para presentar una forma innovadora de superar las sorprendentes ventajas del carbono).

Las abundancias elementales de la corteza terrestre reflejan el hecho de que está hecho de roca, que tiene un componente muy alto de silicio (Si) y oxígeno (O). Las pronunciadas diferencias entre la composición elemental de la corteza terrestre y el sistema solar en su conjunto ponen de relieve cómo los accidentes de la formación planetaria pueden afectar significativamente el depósito químico disponible para crear vida.

También hablaremos un poco más tarde sobre la naturaleza del líquido que forma la vida. En la Tierra, este líquido es universalmente agua. Mientras concluimos nuestra discusión sobre la disponibilidad de productos químicos, podemos echar un vistazo a la composición elemental de los océanos de la Tierra. Esto se da en la siguiente figura. Debido a que nuestros océanos están hechos de agua (H2O), el oxígeno y el hidrógeno son los átomos más frecuentes. Además, dado que la mayor parte del agua en la Tierra es salada, no es de sorprender que el sodio y el cloro, los elementos que componen la sal ordinaria (NaCl), estén presentes. Los otros elementos están presentes si pueden unirse a moléculas que son solubles en agua.

La composición elemental del agua del océano es un producto de su composición química del agua (H2O) pero también del hecho de que contiene sal (NaCl). El carbono (C) es un componente con poca presencia (Trazas) en el agua de mar.

Como una mirada final a la disponibilidad elemental, nos dirigimos al cuerpo humano. Si bien el objetivo de esta discusión es ver qué elementos están disponibles como componentes básicos de la vida, es natural preguntar “sí, pero ¿qué elementos realmente forman la vida?” Esto se muestra (Solo para humanos) en la siguiente figura.

Esta figura muestra las abundancias elementales en el cuerpo humano. Vemos por qué los extraterrestres de cristal en Star Trek: The Next Generation en el episodio “Home Soil” se refieren a los humanos como “feas bolsas de agua en su mayoría.” Dadas las abundancias químicas de la corteza terrestre y el océano, es sorprendente ver qué elementos son más presente en el tejido humano vivo, con un 97% procedente de oxígeno (O), carbono (C), hidrógeno (H) y nitrógeno (N).

El carbono, el oxígeno, el hidrógeno y el nitrógeno dominan la química humana, con un puñado de otros elementos que se unen a la mezcla. Nuestra sangre refleja nuestros orígenes en los océanos de la Tierra. El calcio se usa para los huesos y el metabolismo celular. Existen trazas de minerales traza en nuestros alimentos.

La pregunta fundamental es si otras composiciones químicas son posibles para los extraterrestres, y la respuesta debe ser sí. Los biólogos todavía están trabajando si la composición de la vida en la Tierra es un accidente histórico o una consecuencia inevitable de las propiedades atómicas de los elementos y sus abundancias relativas. Por lo tanto, no es para nada sorprendente que los astrobiólogos no hayan resuelto qué forma deben adoptar los alienígenas o incluso la vida extraterrestre menos restrictiva. Pero las limitaciones de la química y la disponibilidad elemental son seguramente consideraciones importantes para sus discusiones. Los temas que hemos discutido aquí (Desde la cantidad de enlaces atómicos hasta las fortalezas de los enlaces, la disponibilidad elemental y los accidentes y presiones evolutivas) nos condujeron a nosotros. Mientras respiramos oxígeno, las formas de vida basadas en carbono no son inevitables, ahora vemos las ventajas de esa receta en particular.

Ventaja Líquida

La vida en la Tierras es prácticamente a base de agua, específicamente agua líquida. Esto conduce naturalmente a dos preguntas: ¿por qué líquido y por qué el agua? La pregunta líquida es más fácil de responder. La materia normalmente existe en fases sólidas, líquidas y gaseosas. El problema con la fase sólida es la baja movilidad de los productos químicos. Mientras que el mezclado químico en fase sólida es posible, pero es muy lento. La vida podría formarse bajo esas circunstancias, pero esa vida nunca será un extraterrestre en la forma en que lo decimos aquí. (Aunque debemos tener en cuenta la idea de la vida robótica, como se menciona al final de esta entrada). Además, a menos que el ambiente esté totalmente seco, las ventajas de la vida líquida son tan manifiestas que ya sea que la vida basada superará a la basada en sólidos o la evolución encontrará la manera de que la vida sólida se adapte al uso de líquidos.

Por el contrario, la fase gaseosa de la materia es sumamente móvil. De hecho, en muchos libros de texto de escuelas primarias, un gas se define como la fase de la materia que llena cualquier volumen en el que se introduce. Entonces, hacer que las moléculas de gas se muevan no es un problema. Lo que es un problema es que un gas no hace un buen trabajo disolviendo nada. Mientras que el agua salada puede transportar una buena carga de átomos de sodio y cloro, el aire salado solo lleva un poco de agua, que a su vez contiene la sal. Por lo tanto, es igualmente improbable que encontremos formas de vida (Y especialmente extraterrestres) con un solvente gaseoso.

Entonces esto deja líquido. El líquido puede moverse fácilmente y puede disolver sustancias en él para moverlas, como la sal en agua salada. Para que un líquido sea un solvente útil, debe tener dos propiedades. En primer lugar, para ser útil, un líquido debe permanecer líquido en muchas condiciones, y una implicación clara es que la sustancia debe existir en estado líquido en un amplio rango de temperaturas. En segundo lugar, debe poder disolver y transportar otros elementos. Después de todo, la incapacidad para transportar de manera efectiva otros átomos fue la razón por la cual los solventes sólidos y gaseosos fueron rechazados.

En la Tierra, se considera como el solvente universal de la vida es el agua. Esta sustancia ‘milagrosa’ puede no ser realmente un solvente universal, pero es útil analizar las grandes propiedades del agua para comprender qué tipo de características deben poseer otros solventes potenciales.

Los enlaces covalentes que ya hemos examinado no son los únicos tipos de enlaces moleculares que son posibles. Otro tipo importante de enlace se llama enlace iónico. Mientras están en un enlace covalente, dos átomos adyacentes compartirán electrones; en un enlace iónico, un átomo donará un electrón a otro átomo. Esto causa que un átomo tenga una carga positiva y el otro una negativa. Los dos átomos están unidos por sus respectivas cargas. La sal común (Cloruro de sodio) es así.

Las moléculas de agua son un ejemplo de una molécula polar. Esto significa que, a pesar de que no tienen carga eléctrica neta, la carga eléctrica en su interior no se distribuye por igual. Así, un lado de la molécula es, hablando eléctricamente, “más negativo”, mientras que el otro lado es “más positivo”. La interacción entre los dos lados de las moléculas de agua y las moléculas unidas por enlaces iónicos puede romper el límite iónico moléculas. En el caso de la sal, no son las moléculas de sal las que están presentes en el agua cuando se disuelve la sal, sino los átomos de sodio y cloro que flotan libremente. Vemos esto en la siguiente figura. Esto no sería posible si el agua no fuera una molécula polar.

El agua es una molécula polar, lo que significa que la disposición de los átomos de hidrógeno y oxígeno hace que un lado de la molécula tenga una ligera carga positiva, mientras que el otro tiene una carga negativa. Esta propiedad ayuda al agua a disolver los materiales que se mantienen unidos por un enlace iónico, como la sal común o el cloruro de sodio (NaCl), que se muestran aquí.

Las cargas eléctricas de los átomos configuran campos eléctricos, el medio por el cual los átomos se atraen entre sí. El agua puede proteger los campos eléctricos de manera muy efectiva, que es una de las razones por las que puede disolver las cosas muy bien. Los átomos disueltos (Por ejemplo, el sodio con carga positiva y el cloro con carga negativa) no se pueden ver entre sí. Si pudieran verse, serían atraídos y recombinados. Esta propiedad de la materia se denomina “constante dieléctrica” y es muy grande para agua con un valor numérico de 80, lo que significa que el agua puede disolver 80 veces más de un soluto de lo que podría de otra manera. El agua también puede romperse en forma líquida, tanto donando como aceptando un átomo de hidrógeno, produciendo OH- (hidróxido, una base) o H3O + (hidronio, un ácido). La existencia de ácidos y bases puede ser crucial para muchas reacciones químicas relevantes para la vida.

El agua es líquida en un rango de temperatura de 0 a 100 ° C (En las denominadas condiciones normales). Este rango es bastante grande y se volverá importante en la siguiente entrada cuando veamos el concepto de una zona habitable planetaria. Este es el rango de distancias desde una estrella donde el solvente (En nuestro caso, el agua) permanecerá líquido.

El agua tiene otra propiedad muy útil. Se necesita una gran cantidad de calor para cambiar su temperatura. Si vives cerca de una costa, sabes que la temperatura en la playa es más fría en verano y más cálida en invierno que en las áreas circundantes. Esto se debe a que, en un día de verano terriblemente caluroso, cuando el Sol está cayendo sobre usted y cree que se va a derretir, el agua tiende a ser más fría que el aire. Mientras el sol brilla sobre ti, también brilla en el agua. Sin embargo, el agua necesita absorber una (Relativamente) gran cantidad de energía para cambiar su temperatura, por lo que se mantiene fría (Y por lo tanto enfría el área cerca de la playa, más o menos como sentarse al lado del refrigerador con la puerta abierta). Para asignar un número, es cinco veces más fácil calentar arena que agua.

De manera similar, en el invierno, cuando un viento invernal del norte sopla a través de ti, mordiendo frío, una gran reserva de agua contendrá un calor considerable. Esta es la razón por la que el Atlántico Norte permanece libre de hielo tan al norte, mientras que el aire es tan frío que te hace castañear los dientes. En un reverso de las preocupaciones del verano, debido a las propiedades del agua, el océano tiene que perder mucha más energía para cambiar su temperatura.

El agua tiene aún más propiedades útiles e inusuales. Además de que el agua líquida es esencialmente una enorme esponja de calor, se necesita mucha energía para derretir el hielo (Y se debe emitir una gran cantidad de energía para congelar el agua). Del mismo modo, una gran cantidad de energía está involucrada en la conversión de agua en vapor, y viceversa. Estas propiedades son esenciales en la regulación térmica de la superficie de la Tierra.

Otra característica curiosa del agua es que, a diferencia de la mayoría de las otras sustancias, la fase sólida del agua (Hielo) tiene una densidad menor que la fase líquida. Básicamente, el hielo flota. Considera lo que sucedería si lo contrario fuera cierto. Cuando hacía frío, el hielo se congelaba y luego se hundía en el fondo del lago o del océano. A medida que el hielo descendía, se derretía un poco, pero, al hacerlo, enfriaba el agua de abajo. Finalmente, el agua del fondo sería casi la temperatura del hielo. Más derretimiento y hundimiento dejaría hielo en el fondo del cuerpo de agua. Después de eso, año tras año, el hielo se hundiría, aumentando el espesor del hielo hasta que el lago o el océano quedaran congelados, con solo una pequeña porción de la superficie donde se produciría el deshielo estacional del agua. Los polos de la Tierra estarían congelados, desde el fondo del océano hasta cerca de la superficie.

Sin embargo, el hielo real flota y aísla el agua que está debajo del aire más frío. De nuevo, el hielo ayuda a regular la temperatura del entorno. Sin agua, el entorno de la Tierra sería muy diferente.

Los químicos han considerado otros posibles solventes que al menos tienen potencial como un reemplazo de agua. Una consideración importante es la presión atmosférica en la superficie del planeta. Estamos necesariamente algo parcializados, ya que la presión sobre la superficie de la Tierra parece normal. En contraste, la presión superficial en Venus es 92 veces la presión en la Tierra. A tales presiones, otras sustancias pueden ser líquidas en rangos de temperatura más grandes. Por ejemplo, en Venus, el agua puede ser líquida de 0 a 180 ° C.

Para la siguiente discusión, nos limitamos a una atmósfera de presión de la tierra. A nuestra presión familiar, las siguientes sustancias se han considerado como posibles solventes: agua, amoníaco, fluoruro de hidrógeno y metano (tabla 6.1).

Comparación de posibles solventes. Nota: Atm = Atmósfera; J = Joule; g = Gramos; K = Kelvin; cm = Centímetro. Capacidad Calórica es la energía necesaria para cambiar la temperatura del líquido, mientras que el Calor de Vaporización nos menciona cuán difícil es evaporar la sustancia. Los datos de densidad son para la forma líquida de la sustancia.

Podemos ver los méritos de los diversos materiales. El amoníaco tiene buenas propiedades térmicas, pero un rango de temperatura limitado sobre el cual es líquido. Por un lado, el fluoruro de hidrógeno tiene un amplio rango de temperatura en el que es líquido, y se requiere una energía considerable para calentar el líquido, con la desventaja de que puede convertirse a la fase gaseosa muy fácilmente. También tiene una constante dieléctrica atractivamente alta. Por otro lado, en las figuras previas se puede observar que el flúor es bastante raro en el universo. Además, reacciona rápidamente con agua para producir ácido fluorhídrico y rocas que contienen silicio para formar fluoruro de silicio. Este es un material inerte, que ataría el flúor y lo haría inaccesible para la respiración.

Tenga en cuenta que el metano es un material interesante; aunque no es un solvente polar, es una sustancia popular a considerar cuando se piensa en la química biológica alternativa. El metano se puede encontrar en su forma líquida en la superficie de un satélite de Saturno, Titán, por ejemplo.

Los hidrocarburos como el metano tienen algunas ventajas sobre el agua. Ciertamente, la evidencia empírica sugiere que la reactividad de las moléculas orgánicas es comparativamente versátil en los disolventes de hidrocarburos. Sin embargo, dado que los hidrocarburos no son polares, son menos reactivos a algunas moléculas orgánicas inestables.

La superficie de Titán es un excelente caso de prueba para muchas de estas consideraciones. Titán no está en equilibrio termodinámico, tiene amplias moléculas que contienen carbono y está cubierto con un solvente líquido. La temperatura es baja, lo que permite una amplia gama de enlaces covalentes y polares. De hecho, tiene muchas de las características esenciales que parecen ser importantes para la vida. Esto nos lleva a especular que, si la vida es un resultado inevitable de la química, entonces Titán debería tener al menos una vida primitiva. Si resulta que no tiene vida, entonces debemos comenzar a sospechar que hay algo único sobre el medio ambiente de la Tierra, tal vez incluyendo el uso de agua como solvente. Por lo tanto, no es sorprendente que una sonda a los océanos metano de Titán sea un objetivo de alta prioridad en los planes de exobiología de la NASA.

Evolución

La última propiedad que parece ser necesaria para la vida alienígena y definitivamente extraterrestre es una especie de evolución darwiniana. Sin embargo, la vida viene a la existencia, no brotará, completamente formada, como un extraterrestre inteligente, como tampoco lo hizo aquí en la Tierra. Las formas de vida simples serán el comienzo. Encontrarán entornos inestables, competencia de miembros de la misma especie y otros, depredación, etc. Debe haber un mecanismo por el cual los organismos pueden cambiar y adaptarse. Si no, se extinguirán. Es así de simple.

Sin embargo, precisamente cómo funciona esto está en juego. Por ejemplo, en la Tierra, el anteproyecto de vida se almacena en nuestro ADN. Cuatro ácidos nucleicos: adenina, guanina, citosina y timina son los componentes básicos de la familiar espiral de la escalera de la vida. Estos ácidos nucleicos forman los “peldaños” de la escalera, mientras que los lados de la escalera se llaman la columna vertebral y consisten en el azúcar fosforibosa, que separa los peldaños de la escalera.

La evolución ocurre a través de una serie de pequeños cambios que culminan en cambios más grandes en el organismo. El organismo compite en el ecosistema y puede experimentar un mayor éxito reproductivo. Esto es todo bastante estándar.

Lo que es un poco más sutil es darse cuenta de que los cambios significan eso… cambian. Es imperativo que la estructura molecular que contiene el código genético sea estable frente a pequeños cambios. Las propiedades químicas de la columna vertebral del ADN deben dominar la estructura. El intercambio de un ácido nucleico dentro o fuera no debe hacer que toda la escalera se desmorone. Esto es crítico. Si el cambio hace que toda la estructura (Y, por lo tanto, el organismo) no sea viable, entonces esto es un desastre.

Podemos generalizar estas ideas más allá de los detalles del ADN. Las moléculas genéticas de cualquier extraterrestre deben poder (1) cambiar sin destrucción de la molécula y (2) replicarse con precisión con el nuevo cambio. Los sistemas auto-replicantes son bien conocidos en química, pero los que pueden generar copias inexactas, con esa copia inexacta también fielmente replicable, no lo son. Esto podría sugerir que el código genético extraterrestre podría necesitar algo análogo a la columna vertebral del DNA, donde el código se puede “ajustar” como los LEGO. Seguramente los detalles de las moléculas serán diferentes, pero la funcionalidad probablemente sea necesaria.

Extremófilos

Los extremófilos son organismos que viven en condiciones perjudiciales para muchas formas de vida. Ahora, por mi observación, esto debería incluir a las personas que disfrutan estar en la calle en Hermosillo en mayo o quienes residen en la Antártida, pero extremo es en realidad un poco más extremo que eso. La humanidad ha utilizado ambientes extremos durante mucho tiempo para preservar los alimentos. Ahora sabemos que esto se debe a que estas técnicas matan o suprimen las bacterias que de lo contrario causarían deterioro. Algunas técnicas son calentar (Es decir, cocinar) la comida, refrigerarla, salarla o incluso irradiarla.

Y todos sabemos que esto funciona Tenemos refrigeradores y congeladores. Se nos ha advertido que cocinemos carne asada rara a una temperatura interna de alrededor de 80 °C para la carne de res (O bien cocida) e igual para todas las aves de corral. La razón es tanto para cocinar la carne, para convertirla de algo crudo a algo delicioso, como para matar a las bacterias que viven en la carne cruda.

Existen otros métodos para preservar los alimentos que ha encontrado en su supermercado local. Hay vegetales secos, frutas y carnes, que han sido privadas de agua, inhibiendo el crecimiento bacteriano. Las nueces y otros alimentos vienen envasados al vacío para reducir el oxígeno disponible en el paquete. Procesar alimentos usando alta presión puede matar a los microorganismos. Esto se usa para muchos productos, incluyendo guacamole y jugo de naranja.

La carne se cura mediante la salazón, como en el tocino y jamón familiar. La alta salinidad mata a los gérmenes. Ahumar carnes también es una forma de almacenarlos. El azúcar, a pesar de que es rico en calorías, es una buena forma de conservar las frutas. Las gelatinas y las frutas glaseadas pueden permanecer mucho tiempo sin que se deterioren.

El alcohol, además de sus efectos secundarios que alteran el estado de ánimo, también se usa para conservar algunas frutas. Esto generalmente se realiza junto con el uso de azúcar como conservante.

Cambiar la acidez o la alcalinidad de los alimentos es otra manera de alargar su vida útil. Mientras que la salazón desempeña un papel en la fabricación de encurtidos, el uso de vinagre (con su acidez) puede prolongar la vida útil de los alimentos. Y, si usted es de ascendencia escandinava, puede disfrutar de Lutefisk, que es pescado preparado con lejía, que es altamente alcalino.

La modificación de la atmósfera es también una técnica útil. Los alimentos, como los granos, se pueden poner en un recipiente y el aire se puede reemplazar con nitrógeno o dióxido de carbono de alta pureza. Esto elimina el oxígeno y destruye insectos, microorganismos y otros intrusos no deseados.

El verdadero punto es que la humanidad ha sabido sobre varias formas de preservar la comida durante milenios. El deterioro de los alimentos proviene de criaturas indeseables (Típicamente microorganismos de algún tipo) que “comen” los alimentos y liberan productos de desecho. Mediante una combinación de las técnicas mencionadas anteriormente, hemos aprendido a matar las bacterias indeseables que de otra manera arruinarían nuestra comida.

Nuestra experiencia nos ha llevado a comprender el rango de condiciones bajo las cuales puede existir una vida similar a la de la Tierra. Sin embargo, una erudición relativamente reciente ha revelado que la vida es realmente más dura de lo que pensamos.

Los biólogos han dado el nombre de “extremófilo” (Que significa “amante de las condiciones extremas”) a los organismos que prosperan en ambientes que matarían formas familiares de vida. Si bien el estudio de los extremófilos aún es una ciencia bastante joven, podemos analizar algunas de las condiciones en que se ha encontrado la vida exótica.

En el fondo de los océanos, a veces a profundidades extraordinarias, hay lugares donde el magma se abrió camino desde el interior de la Tierra hasta el fondo del océano. En estos puntos, llamados respiraderos hidrotermales, el agua sobrecalentada se aleja del magma. Esta agua puede calentarse muy por encima de la temperatura de ebullición más conocida (100 °C), pero la gran presión en el fondo del océano hace que el agua permanezca en su forma líquida. El agua dentro de estas ventilaciones hidro-térmicas puede ser de casi 370 °C, sin duda lo suficientemente alta como para matar cualquier forma de vida ordinaria.

A solo unos metros de distancia de estas aberturas, la temperatura del agua del océano puede estar muy próxima al punto de congelación, aproximadamente 3 °C. En este gradiente de temperatura crece un ecosistema inusual. En la parte superior de la cadena alimenticia hay tipos de almejas y cangrejos relativamente comunes que consumen alimentos de manera estándar. Sin embargo, en la base de la cadena alimenticia hay bacterias termófilas (Amantes del calor) que pueden vivir a temperaturas superiores al punto de ebullición habitual de 100 °C. Estas bacterias no usan las mismas vías bioquímicas de la vida ordinaria. En lugar de usar oxígeno como receptor de electrones, usan azufre u ocasionalmente hierro. Estos materiales se arrojan copiosamente al mar, disueltos por el agua de la fuente de magma.

De hecho, el pensamiento actual es que estos procariotas son quizás los más cercanos en su naturaleza al LUCA de la vida en la Tierra. ¿Cómo podría ser esto? Bueno, deberíamos recordar que LUCA era en sí misma una forma de vida sofisticada y ciertamente no la única que existía en ese momento. Si bien lo que sigue es pura especulación, podríamos imaginar que esta forma de vida podría haber sobrevivido a un golpe tardío en la Tierra por un cometa o algo similar. El impacto habría vaporizado los océanos y solo la vida más profunda y resistente al calor podría haber sobrevivido.

La vida resistente al calor y al azufre no es el único tipo que existe en ambientes extremos. En el otro extremo del espectro están los criófilos amantes del frío. Mientras que el agua pura se congela a 0 °C, el agua salada puede permanecer líquida a temperaturas mucho más frías que eso. Las formas de vida en el extremo frío del espectro tienen problemas bastante diferentes en comparación con sus primos termófilos. Si el agua se congela, se expande y puede romper las membranas celulares. Además, la temperatura reducida puede reducir de manera significativa la tasa de reacciones químicas experimentadas por la forma de vida. En esencia, la vida fría “vive más lento.” Además, al igual que la mantequilla fría es difícil de cortar, mientras que la mantequilla caliente es casi un líquido, el frío puede endurecer las membranas celulares de la vida fría. Se necesitan adaptaciones químicas para mitigar los problemas del frío.

Según nuestro conocimiento actual, no conocemos ninguna vida eucariótica que pueda existir a temperaturas fuera del rango de -15 a 60 °C. Mientras que el número más bajo está por debajo del punto de congelación del agua ordinaria, el agua con alta salinidad puede permanecer líquida a estas temperaturas. La vida microbiana se ha observado en un rango de temperatura de -30 a 120 °C. Un ejemplo de un organismo criófilo es Chlamydomonas nivalis, una forma de alga que es responsable del fenómeno de “nieve de sandía”, en el que la nieve tiene el color e incluso el ligero aroma de la sandía.

Las consideraciones químicas pueden darnos una idea de las limitaciones últimas en la temperatura de la vida basada en el carbono. Debido a la fuerza de enlace que implica átomos de carbono, es difícil imaginar la vida a una presión estándar mucho más alta que 325 °C; tan caliente la temperatura que puede alcanzar su horno. Por supuesto, la presión puede afectar la velocidad a la que las moléculas se rompen y la descomposición de las moléculas puede ser más lenta a alta presión. Probablemente sea seguro decir que la vida basada en el carbono no es posible por encima de los 530 °C a cualquier presión.

El agua es fundamental para la vida, sin embargo, puede ser que haya extremófilos que no la necesiten en gran medida. Buscar vida en lugares con poca agua es una forma de comprender mejor el ámbito de lo posible. Y la Tierra tiene algunos lugares extremadamente secos. El desierto de Atacama es comúnmente llamado el lugar más seco de la Tierra. Algunos lugares en el desierto reciben aproximadamente una fracción de centímetros de lluvia por año y algunas estaciones meteorológicas nunca han registrado lluvia alguna. Hay montañas altas (más de 7000 metros de altura), que uno podría esperar que estén cubiertas de glaciares, que estén completamente secas. De hecho, hay lechos de ríos vacíos que se han estimado secos durante hasta 120,000 años. Hay algunos lugares en el Desierto de Atacama que se cree que son el lugar natural en la Tierra con condiciones comparables a Marte. De hecho, la NASA ha hecho algún trabajo allí para ayudar a diseñar sondas marcianas. Han llegado a experimentar la búsqueda de la vida en las arenas del desierto de Atacama, utilizando técnicas que se espera que respondan definitivamente a la cuestión de la vida en Marte.

También hay formas de vida que son halófilos (Amantes de la sal). En la región del Medio Oriente del Mar Muerto, la mayoría de la vida no podría sobrevivir. Sin embargo, hay líquenes y vida celular que han adaptado su química para mantener su entorno interno de tal manera que prospere. Algunas de estas formas de vida realmente necesitan un ambiente con alto contenido de sal para vivir. Es difícil creer que un ambiente que puede curar un jamón sea en realidad un lugar cómodo para la vida y sin embargo es cierto.

Al igual que con los otros extremos que preservan los alimentos, la vida se ha encontrado en ambientes altamente ácidos y básicos, e incluso en presencia de radiactividad mil veces más alta que la que mataría a las formas de vida más duras y normales. Estas observaciones ciertamente han ampliado las expectativas de los científicos sobre el rango de entornos en los que la vida puede habitar con éxito.

Con el descubrimiento de estos extremófilos, los científicos han intensificado su búsqueda de los nichos que la vida puede ocupar en la Tierra. Hemos extraído vida de núcleos de pozos tomados a unos tres kilómetros bajo la superficie de la Tierra. La vida se ha encontrado flotando en el aire enrarecido de la estratosfera. Los microbios se han encontrado a una altura de hasta 15 kilómetros sobre el suelo. Este ambiente es extremadamente duro. La temperatura y la presión son muy bajas, el flujo de luz ultravioleta es muy alto y casi no hay agua. La supervivencia en este ambiente hostil inevitablemente plantea cuestiones de “panspermia”, que es la premisa de que la vida podría haber llegado a la Tierra desde algún otro cuerpo celeste… como Marte u otros. Si bien esto parece improbable, no está descartado. Pero la vida tenía que comenzar en alguna parte, por lo que las preguntas que hemos discutido aquí siguen siendo relevantes, incluso si la vida comenzó en otro lado. De interés para nosotros aquí es la comprensión de que algunas formas primitivas de vida pueden existir en un entorno que mataría a las criaturas que viven más cerca de la superficie de la Tierra. Sin embargo, esta forma primitiva de vida no sería un extraterrestre (Concepto ya explicado en otras entradas del Blog). Pero sí nos proporciona información adicional sobre cómo puede ser la vida basada en la Tierra, con nuestra bioquímica basada en el carbono y el agua.

¿Vida basada en el Silicio?

En la ciencia ficción, hay ciencia ficción suave y dura. En la dura, el escritor intenta avanzar en la línea argumental limitada por la ciencia más conocida de la época, mientras que, en la suave, se toman más libertades con la ciencia. En el caso de las historias sobre la vida extraterrestre, una alternativa común a nuestro tipo familiar de vida es una basada en el átomo de silicio. Los argumentos presentados anteriormente sobre las ventajas del carbono, específicamente los cuatro enlaces disponibles y la rica complejidad química que conlleva) son bastante convincentes, lo que sugiere que los cuatro enlaces disponibles son una condición necesaria de la vida compleja. De hecho, los químicos han catalogado más moléculas que involucran carbono que todas las moléculas conocidas que excluyen el carbono. Piénsalo. Si tomaste todos los elementos, excepto el carbono, e hiciste todos los compuestos conocidos, tendrías menos compuestos que los que se han encontrado y contienen carbono.

Teniendo en cuenta los beneficios de los cuatro enlaces, es por lo tanto natural que un escritor de ciencia ficción que quiere romper con la vida basada en el carbono invoque al silicio como el siguiente elemento base candidato para construir un ecosistema ficticio. Solo hay un problema: no es tan simple como eso.

Ya hemos notado la simple objeción de que, mientras exhalamos dióxido de carbono como un producto de desecho gaseoso, el dióxido de silicio es sólido y estamos más familiarizados con él como arena. Este hecho particular se notó al principio de la historia corta de 1934 de Stanley G. Weinbaum, A Martian Odissey, en la que describió una criatura marciana basada en silicio que excreta ladrillos cada diez minutos. Estos ladrillos fueron los productos de desecho de la respiración.

Sin embargo, los problemas con el silicio son mucho más profundos y fundamentales que esto. Mucho más dañinos son los problemas de silicio con su estabilidad en sus interacciones con otros átomos y la velocidad a la que el silicio interactúa químicamente.

Una característica muy importante de cómo los enlaces de carbono con otros elementos es que la fuerza de enlace entre dos átomos de carbono (C-C) es bastante similar a la de un enlace carbono-hidrógeno (C-H), así como carbono-oxígeno (C -O) y carbono-nitrógeno (C-N). Debido a esto, es enérgicamente bastante fácil para una reacción intercambiar un átomo y conectar otro. Desde el punto de vista de la energía, cuál de estos elementos participa en el enlace no importa demasiado y estos intercambios ocurren con bastante libertad.

Por el contrario, el silicio no tiene esta propiedad. Resulta que la unión de silicio-oxígeno (Si-O) es mucho más fuerte que con hidrógeno (Si-H), nitrógeno (Si-N) o incluso otros átomos de silicio (Si-Si). En consecuencia, el silicio se une fácilmente al oxígeno (que produce dióxido de silicio), y es muy difícil romper ese enlace y deslizarse en otro átomo.

Lo que hemos mencionado aquí es solo una característica de los enlaces interatómicos individuales. Cuando volvemos nuestra atención a los enlaces múltiples, el carbono vuelve a ser bastante superior. Resulta que un enlace doble de carbono consume aproximadamente el doble de energía que un enlace simple, mientras que un enlace triple consume aproximadamente tres veces más energía. No tenía por qué ser así. Los detalles de los enlaces múltiples son diferentes de los enlaces simples, y el carbono se puede considerar ‘suertudo’.

El silicio, en comparación, tiene un tiempo mucho más difícil para hacer enlaces dobles y triples. Esto tiene que ver con el tamaño y la forma de los átomos. Las imágenes de la quinta figura de esta entrada dan una impresión demasiado simplificada de la forma de los átomos. El silicio y el carbono realmente se ven como esferas con protuberancias que sobresalen de ellos, con los baches participando en los enlaces. Debido a que la esfera de silicio es más grande que la de carbono, y las protuberancias de silicio no son mucho más grandes que las de carbono, las protuberancias están más lejos entre dos átomos de silicio adyacentes. Esto hace que sea más difícil acercar las protuberancias a otros átomos para compartir electrones, lo que hace que un segundo enlace sea mucho más débil que el primero. En consecuencia, la fuerza de los dobles enlaces entre átomos de silicio adyacentes no es muy diferente de los enlaces de silicio individuales. Esto hace que la química compleja usando silicio sea mucho más difícil. Este punto se ilustra en la siguiente figura.

Debido a su tamaño y forma, los átomos de silicio tienen dificultades para hacer dobles y triples enlaces estables. La fuerza del segundo enlace de silicio es mucho más débil que el primer enlace de silicio. Esto está en contraste con el carbono, en el cual el segundo enlace es comparable a la fuerza del primer enlace. Las áreas negras representan electrones disponibles para la unión. En silicio, los electrones que participan en los enlaces segundo, tercero y cuarto están separados por una distancia mayor y, en consecuencia, se unen más débilmente.

 

Finalmente, la facilidad con que pueden ocurrir las reacciones es mucho mayor con los átomos de silicio. Considere la posibilidad de una estufa de gas, inadvertidamente dejada encendida, por lo que el gas natural que contiene carbón llena la casa. El gas puede llenar la casa, pero no explotará sin una chispa para poner los eventos en movimiento. Sin embargo, un “gas natural de silicio” similar reaccionaría espontáneamente sin la chispa. Esta velocidad de reacción reduce el tiempo necesario para formar moléculas complejas.

Entonces, ¿esto significa que la vida basada en silicio es imposible? ¿Podría la gente del Planeta X tener una discusión sobre los beneficios de la vida basada en el silicio? Bueno, claro. No es como que los factores mencionados en esta entrada sean definitivos, ni debería pensar que hemos explorado exhaustivamente todas las opciones. Pero estos factores son sin duda razones poderosas para no pensar en la vida basada en el silicio como igualmente probable que en otros mundos cubiertos por la vida basada en el carbono. Incluso Carl Sagan afirmó que, aunque solo era un chauvinista del agua débil, era un gran chauvinista de carbono.

Por lo tanto, los científicos deben considerar la posibilidad de una vida extraterrestre basada en átomos distintos del carbono, pero no se considera altamente probable. Sin embargo, cuando hablamos de esta manera sobre la vida del silicio, debemos recordar que hemos estado hablando sobre la vida que evolucionó directamente de las sustancias no vivas. Hay otra forma de vida de silicio que debemos tener en cuenta.

Silicio de Segunda Generación

“La resistencia es inútil. Serás asimilado.” Esta es una de las frases de marca registrada de uno de los némesis de la humanidad en Star Trek: The Next Generation. Los Borg son cyborgs, que son una mezcla de implantes orgánicos (Es decir, blandos como nosotros) y cibernéticos, que obviamente incluyen metales y silicio. En la serie Beserker de Fred Saberhagen, las criaturas robóticas autorreplicantes vagaban por el cosmos con la intención de destruir la vida. Una computadora llamada HAL en 2001: A Space Odyssey se hizo consciente de sí misma y se volvió contra su tripulación. El epónimo Terminator es un robot consciente de sí mismo encargado de la exterminación de la humanidad. Los Cylons de Battlestar Galactica están en guerra con los humanos. Los Daleks del Dr. Who deambulan diciendo “Exterminar”. Las criaturas basadas en el silicio de la ciencia ficción a menudo son malos.

Uno puede encontrar muchos ejemplos de enemigos cibernéticos de la humanidad en la literatura de ciencia ficción. La trama es a menudo similar a la de Frankenstein, cuando una forma de vida artificial se sale de control y se vuelve contra su creador. Sin embargo, los organismos de esta forma deben considerarse vida en el sentido de cómo nos referimos a los extraterrestres. Estas criaturas cibernéticas (Ya sean enemigas o amigas) no habrían evolucionado directamente de la materia inanimada, pero deberíamos tenerlas en cuenta al considerar qué tipo de alienígenas podríamos encontrar algún día. De hecho, cuando uno considera una forma de vida de segunda generación, es decir, una que está cuidadosamente diseñada por una primera forma de vida inteligente (Donde por primera vez, me refiero a un tipo que ha evolucionado desde cero), muchas de las consideraciones enumeradas aquí son menos importante. Metales, silicio y otros elementos podrían ser partes esenciales de la vida creada. Incluso la vida basada en el carbono de segunda generación podría tener una bioquímica más compleja y eficiente.

Pero, realmente, la idea de una vida de segunda generación quizás no sea la primera preocupación de los científicos que buscan alienígenas en el universo. Sin embargo, si alguna vez aparecen naves espaciales alienígenas sobre las ciudades de la Tierra, probablemente sea mejor esperar que no estén en forma de grandes cubos. Ya sabes, por si acaso…

Para concluir por hoy

Si bien en esta entrada he tratado de describir las consideraciones más importantes en la creación de la vida, de ninguna manera debes pensar que lo que dije aquí es a prueba de todos los argumentos. Algunas de las cosas son bastante indiscutibles, por ejemplo, parece muy poco probable que el helio juegue un papel muy importante en la bioquímica de los extraterrestres. El helio simplemente no participa en la unión atómica. Además, existe una clara ventaja para el uso de carbono como elemento base. Ser capaz de crear muchos enlaces conduce a una química compleja y una biología correspondientemente diversa. También es cierto que sin la energía adecuada (Y una diferencia de energía explotable), la vida no puede existir.

Sin embargo, más allá de eso, es difícil decir algo definitivo. Una vez que uno supera las mínimas consideraciones químicas y físicas de la vida, la evolución es una poderosa herramienta de optimización. Los ciclos bioquímicos basados en la Tierra son extremadamente complejos, y es literalmente increíble que la bioquímica extraterrestre no sea tan complicada como diferente de las rutas observadas en la Tierra.

Aun así, sabemos lo suficiente sobre química para saber que algunas vías metabólicas posibles no pueden producir la misma cantidad de energía que otras. Esto establece algunos límites para los alienígenas que podamos encontrar. Sin embargo, cuando tenemos en cuenta que la vida puede existir en planetas con temperaturas o presiones muy diferentes de las que encontramos en la Tierra, las limitaciones no son tan absolutas como parece.

Lo que espero haber hecho es haberle dado la sensación de que no todas las ideas que puede encontrar en la ciencia ficción son posibles, por ejemplo, una nube de gas sensible es bastante difícil de imaginar. Aun así, el reino de lo posible es todavía bastante amplio. Los astrobiólogos definitivamente tienen un trabajo bastante complejo.

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.